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Abstract
In recent years, it has become increasingly clear that space weather distur-

bances can be triggered by transient upstream mesoscale structures (TUMS),
independently of the occurrence of large-scale solar wind (SW) structures, such as
interplanetary coronal mass ejections and stream interaction regions. Different
types of magnetospheric pulsations, transient perturbations of the geomagnetic
field and auroral structures are often observed during times when SW monitors
indicate quiet conditions, and have been found to be associated to TUMS. In this
mini-review we describe the space weather phenomena that have been associated
with four of the largest-scale and the most energetic TUMS, namely hot flow
anomalies, foreshock bubbles, travelling foreshocks and foreshock compressional
boundaries. The space weather phenomena associated with TUMS tend to be
more localized and less intense compared to geomagnetic storms. However, the
quiet time space weather may occur more often since, especially during solar
minima, quiet SW periods prevail over the perturbed times.
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1 Introduction

For decades, space weather phenomena have been thought to be strictly related
to solar activity. This is mainly due to the fact that the strongest magnetospheric
and ionospheric disturbances, geomagnetic storms and substorms [e.g., 2], occur
during the passage of large-scale structures (of the order of ≳1 a.u.) in the solar
wind (SW), such as interplanetary coronal mass ejections, stream interaction regions
and interplanetary shocks [e.g., 28]. During such events, most extreme conditions
conducive for space weather, such as large southward IMF, high speed solar wind,
and large dynamic pressure (Pdyn) fluctuations, may be met. This in turn drives
strong magnetopause motion and reconnectiom.

Geomagnetic storms and substorms have been a subject of extensive research
for a long time because they can interfere with our technologies by disrupting the
proper functioning of, for example, electric grids, GPS signals, and artificial satellites
[e.g., 15].

However, in recent years it has become clear that some space weather phenom-
ena, such as bursts of large-amplitude magnetospheric ultra-low-frequency (ULF)
pulsations, transient (nonperiodic) geomagnetic disturbances, auroras, etc. may
occur in the absence of known space weather drivers [71]. Since their origin is not
related to solar disturbances, we here refer to them as solar-quiet space weather.

Such phenomena may be caused by transient upstream mesoscale structures
(TUMS). These form in the region upstream of the bow-shock of Earth. The term
mesoscale refers to their typical scale sizes ranging form ∼2000 km to more than 10
Earth radii (1RE ∼ 6400km) [71]. The sizes of the largest TUMS are thus comparable
to but smaller than the transverse diameter of the dayside magnetosphere [∼30 RE

63].
TUMS owe their existence to the collisionless bow-shock that stands in front of

our planet. The bow-shock dissipates some of the SW kinetic energy by deflecting
and energizing a small portion of the incident particles (electrons, ions). At its Qpar
section, where the angle between the upstream IMF and the local shock normal is
less than 45◦, reflected particles may escape back upstream to large distances where
they coexist with the incoming SW. Such non-Maxwellian particle distributions lead
to different instabilities, forming a highly perturbed foreshock region [16].

The formation mechanisms for TUMS fall into three categories: (1) the interaction
of IMF directional discontinuities in the SW [6] with the bow-shock or (2) with the
reflected foreshock ions and (3) due to internal foreshock processes.

The main reason why TUMS have such an impact on the near-Earth environment
is the variation in magnetic field orientation and strength and the SW Pdyn inside them
which lead to modifications of the total (dynamic, thermal and magnetic) pressure
impinging upon the magnetopause [e.g., 4]. As has been shown in the past, upstream
negative and positive pressure pulses excite toroidal and poloidal mode waves in the
Pc5 frequency range [69, 72]. Even modest positive pressure pulses may also lead to
an increase in temperature anisotropy of energetic protons which in turn results in
ion-cyclotron instability and consequently in Pc1 magnetospheric waves [42, 1].

Pdyn variations have also been found to generate field aligned currents [FACs, 3, 39]
and intensify whistler mode waves [33, 55]. FACs can lead to electron precipitation
and discrete auroras, while the intensified whistler mode waves can scatter electrons
into loss cones and induce diffuse auroras.

Finally, it should be mentioned that various types of TUMS have been observed
at other planets, [e.g., 43, 36, 47, 64, 11, 9, 8, 10, 65, 53, 40, 37], although their
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impact on the corresponding downstream regions has not been studied due to the
lack of multi-spacecraft observations.

It is the purpose of this mini review to summarize the impact of the largest-scale
TUMS on the near-Earth environment. In the following sections we describe such
effects caused by hot flow anomalies (HFA, section 2), foreshock bubbles (FB, 3),
foreshock compressional boundaries (FCB, 4), and travelling foreshocks (TF, 5). The
HFAs and TFs fall into the first category in terms of their formation mechanisms,
FBs fall into the second category, while the FCBs occur due to internal foreshock
processes. In section 6 we summarize these effects while in section 7 we list some
of the future tasks needed to be done in order to deepen our knowledge about the
subject.

2 Hot flow anomalies

HFAs [51, 59], form when an IMF directional discontinuity intersects the bow shock
and the convection electric field (−V ×B) points towards the discontinuity’s current
sheet on at least one side. Their typical sizes range between 1 and 3RE in the
direction perpendicular to their current sheet, but they have been observed by [12]
to extend up to 7RE upstream of the bow shock. HFAs are characterized by (see
also Figure 1a) central cores that contain hot plasma with flow velocities much lower
than the ambient SW. The plasma flow inside HFAs is by definition highly deflected
from the Sun-Earth line. The plasma density and magnetic field values in the core
are lower than in the SW. The core is surrounded by a rim in which magnetic field
strength and plasma density are enhanced compared to ambient SW values. An
example of an HFA is shown in Figure 1a.

The first geoeffective HFA was reported by [50, 49, 7, 48]. An order of magnitude
decrease of the Pdyn inside the event caused the magnetopause to move outward
and then inward in excess of 5RE past Interball-1 twice within 7 minutes. Minor
disturbances in geomagnetic field magnitude were observed at geosynchronous orbit
by GOES-8, while Polar Ultraviolet Imager (UVI) observed a sudden brightening of the
afternoon aurora, followed by a more intense transient brightening of the morning
aurora.

[25] reported observations of extreme motion of the dawn flank magnetopause
caused by an HFA. The magnetopause moved outward by at least 4.8RE in 59 s,
implying flow speeds of up to 800 km s−1 in the direction normal to the nominal
magnetopause. The transient deformation of the magnetopause generated field-
aligned currents (FACs) and created travelling convection vortices [e.g., 21] which
were detected by ground magnetometers.

Magnetopause deformation due to HFAs was also observed by [54]. The authors
reported a highly asymmetric deformation of the magnetosphere and suggested that
it occurred either due to one elongated HFA or a pair of HFAs that simultaneously
appeared at both flanks. On the dusk side, the deformation was very weak. On the
dawn side, the magnetopause was first displaced outward from its nominal position
by ∼ 5RE and then inward by ∼ 4RE.

[23] and [58] observed HFAs that excited global Pc5 perturbations [periods 150–
600 s, e.g., 24] at the geosynchronous orbit. [23] also reported observations of
magnetopause surface modes caused by an HFA. [58] demonstrated that HFAs
can also generate localized magnetospheric oscillations in the Pc5 range with clear
dawn-dusk asymmetry.
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Several works also related passing HFAs to geomagnetic pulsations in the Pc3
range (22–100 mHz). [17] reported observations of an HFA associated with a type of
Pc3 fluctuations whose frequency did not depend on the IMF strength, contrary to
the case of Pc3 waves typically observed inside the magnetosphere [e.g. 61]. Similarly,
[73] reported observations of an HFA causing nearly monochromatic Pc3 ULF waves
that were observed in orbit and on the ground and that exhibited characteristics of
standing Alfvén waves. They occurred in all sectors (dawn, noon, dusk and nightside)
indicating that the HFA cause a global response of the magnetosphere.

HFAs have also been shown to impact the nightside magnetosphere. This was first
reported by [19] who observed an HFA remnant in the far magnetotail at X ∼ −310RE.
Similarly, impacts of unidentified TUMS, possibly HFAs, in the midtail magnetosheath
have also been reported by [66] and [34, 35], implying that HFAs may exhibit lifetimes
of several tens of minutes.

Figure 1e) summarizes the reported downstream effects of HFAs.

3 Foreshock bubbles

Foreshock bubbles (FBs) form due to the interaction of IMF directional discontinuities
with the backstreaming foreshock ions. When the they cross a discontinuity and
project their velocity in the new perpendicular direction more than in the new
parallel direction, the foreshock ions become more concentrated and thermalized on
the upstream side of the discontinuity. Foreshock ions can easily cross rotational
discontinuities (RD), since there exists a normal magnetic field component, so the ions
can simply propagate along the field lines through them. At tangential discontinuities
(TD), the normal magnetic field component is zero, so only ions with gyroradii larger
than the TD thickness are able to cross the TDs. [41, 31, 32, 67, 68]. Thus, stronger
energy fluxes of foreshock ions are expected across RDs which may cause faster
expansion of RD-driven FBs compared to TD-driven FBs.

Once ions cross the discontinuities, they undergo additional heating and start to
expand against the SW, forming the bubble. FBs exhibit signatures in spacecraft
data that are similar to those of HFAs (see Figure 1b), namely a hot, tenuous core
with low IMF strength and a rim with enhanced density and B-magnitude (see
Figure 1b). However, whereas HFAs commonly exhibit rims on their upstream and
downstream edges, the FBs only exhibit them on their upstream side. FBs may affect
the magnetopause on larger scales than HFAs since their sizes transverse to the
Earth-Sun line are larger [5–10RE 5, 60].

The first to report that FBs can be geoeffective were [23]. The authors showed
that a FB caused magnetopause undulations. Inside the magnetosphere but close to
the magnetopause, the event caused variations of the North-South component of
the magnetic field and similar effects were observed at geosynchronous orbit. Pc5
pulsations with similar properties as those commonly associated by the HFAs, were
also observed.

[5] showed that FBs have a global impact on Earth’s magnetosphere. Once an FB
interacts with the bow shock, magnetosheath particles are accelerated towards the
intersection of the FB’s current sheet with the bow shock resulting in fast, sunward
flows as well as outward motion of the magnetopause. Ground-based magnetometers
can detect signatures of this motion simultaneously across 7 h of magnetic local
time.

Figure 1f) summarizes the reported downstream effects of FBs.
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4 Foreshock compressional boundaries

The FCBs [e.g., 44, see also Figure 1c] are boundary regions that separate the highly
disturbed ultra-low frequency [ULF, 20] wave foreshock from either the pristine SW or
the foreshock region populated by field-aligned ion beams [46] but not the ULF waves.
FCBs are characterized by a strong compression of magnetic field magnitude and
density that is followed by strong decreases of these two quantities on the foreshock
side (Figure 1c). These events differ somewhat from the rest of the TUMS in the sense
that they are not truly transient phenomena. Models indicate that they exist even
during steady solar wind conditions and it is their motion, due to changing solar
wind conditions, that has a transient impact on the magnetosphere.

[23] described two FCBs that were observed to have an impact on the magne-
topause and inside the magnetosphere. Both caused the Themis-D probe, originally
located near the magnetopause on the magnetospheric side, to briefly enter the
magnetosheath. Transient magnetic field and plasma density perturbations were
detected throughout the dayside sector by several spacecraft located at distances
corresponding to geosynchronous orbit and beyond. The timing of the perturbations
observed by different spacecraft was found to be consistent with the motion of the
FCB across the bow shock, in a dusk to dawn sense. Figure 1g) summarizes the
reported downstream effects of FCBs.

5 Travelling foreshocks

TFs or foreshock cavities [e.g., 57, 27, See also Figure 1d] appear upstream of the
bow shock, either in pristine SW or in the region of the ion foreshock that is not
perturbed by the ULF waves. This happens when a bundle of magnetic field lines from
a relatively thin magnetic flux tube, with orientation different from the background
IMF, connects to the nominally quasi-perpendicular bow shock in such a way that
the geometry of the section of the bow shock intersected by the flux tube is changed
from quasi-perpendicular to quasi-parallel. As the flux tube is convected by the
SW, its intersection with the bow shock propagates along the bow shock surface.
Upstream of it, a foreshock is formed that follows this intersection. There are several
ways that TFs may cause disturbances in the magnetosphere and the atmosphere
(see also Figure 1g).

For example, it has been reported by [52] that two TFs drove magnetospheric
ULF waves in the Pc1 frequency band. Specifically, TFs caused ground Pc1 pearl
pulsations, which are amplitude-modulated Pc1 waves with a repetition period of
several tens of seconds [e.g. 26]. These pearl pulsations were observed for a long
interval (∼1 hr) in the morning sector (4–8 local time, LT) and were detected at eight
ground stations located at L = 3.5–7.4 (L is the distance expressed in RE at which
the B-field lines cross the Earth’s magnetic equator).

The same authors reported GOES-12 and THEMIS E measurements showing the
Pc1 pulsations detected by the ground stations accompanied by EMIC waves in the
frequency range 0.2–0.35 Hz in the prenoon sector (7.5–12 LT) at geocentric distances
between 5.8RE and 9RE. The events also caused precipitation of ions with energies
30–80 keV. Additionally, GOES-10 and 12 and THEMIS-B, -E and -D observed a
transient compression of the dayside magnetosphere during which the magnetic
field strength changed by up to 10 nT and whose observed durations were of up to
5 minutes.
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Finally, [56] and [30] showed that TFs are directly transmitted into the magne-
tosheath where they can cause the formation of enhanced Pdyn structures, known
as magnetosheath jets [45], in the quasi-perpendicular magnetosheath. This is the
region of the magnetosheath in which the jets are rarely observed and their origins
are different from those detected in the quasi-paralell magnetosheath.

6 Summary and discussion

In this mini-review we discussed the reported downstream effects of the four largest-
scale TUMS on the near-Earth environment. These structures may strongly affect
the bow shock–magnetosheath–ionosphere system and create a wide range of space
weather phenomena. It is almost certain that in the future the list of impacts of each
type of TUMS will keep increasing. Table 1 summarizes explicitly reported space
weather effects.

HFA FB FCB TF
Magnetopause displacement × × ×
Transient geomagnetic disturbances × × ×
Transient magnetospheric plasma compression ×
Transient deceleration of magnetospheric plasma ×
Pc1 pulsations ×
Pc3 pulsations ×
Pc5 pulsations × ×
Magnetospheric EMIC waves ×
Ion precipitation ×
Field-aligned currents ×
Travelling convection vortices ×
Ground magnetic field perturbations × × ×
Auroral brightenings ×
Magnetosheath jets ×

Table 1: Transient upstream mesoscale structures and observed downstream effects.

We still do not understand all the mechanisms by which different TUMS affect
the regions downstream of the bow shock.

For example, we do not know how the monochromatic Pc3 fluctuations are caused
by HFAs. One possibility is that shocks that sometimes form at the HFAs and FBs
steepened edges, drive their own foreshocks with ULF fluctuations which eventually
perturb the magnetosphere, similar to the ULF waves in the terrestrial foreshock
[e.g., 18, 62]. Turbulence and waves in the cores of these structures [70, 29] could
also be the cause.

Another possible effect that has not yet been well studied is that TUMS associated
enhancements of Pdyn could lead to impulsive penetration of mass into the magneto-
sphere [13]. Modification of the IMF upstream and in the magnetosheath could also
result in magnetopause reconnection [22].

These effects could be caused by TUMS associated magnetosheath jets [45]. It
has been shown by [56] and [30] that the TFs transmitted into the magnetosheath
can be a source of these jets downstream of the quasi-perpendicular bow-shock.
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[38, 14] have demonstrated that magnetosheath jets can be geoeffective and can act
as a vector for coupling TUMS and foreshock processes to the magnetopause and
ionosphere.

To make matter worse, certain types of TUMS can contain another type of upstream
mesoscale structures. The latter is most evident in the case of TFs that often contain
FCBs at their edges [27]. Moreover, TFs exhibit other phenomena that are also
observed inside the “regular” foreshock, such as ULF waves, shocklets, foreshock
cavitons, etc.

7 Future work

It is clear that our knowledge of how exactly TUMS interact with the bow shock and
the regions downstream of it is still limited. Future investigations should include
more multi-point observations of individual events with spacecraft in different regions
(upstream of the bow shock, magnetosheath, magnetosphere, ground observations).
These should be accompanied by local and global numerical simulations. There are
numerous tasks in the “to do” list:

• Study of the microphysics in the cores and the boundary regions of the TUMS,
i.e. possible generation of ULF waves and turbulence, magnetic reconnection,
particle heating and acceleration.

• Study of the impact of foreshock cavitons and spontaneous hot flow anomalies
on the regions downstream of the terrestrial bow-shock.

• Comparison study of properties and impact if FBs formed by rotational versus
tangential discontinuities.

• Detailed investigations of the impact of the TUMS on the bow shock. Do TUMS
cause shock erosion, its additional rippling and what are the downstream
consequences of these processes?

• Studies of the TUMS’s substructure and the physical processes leading to it.

• Direct observational confirmation between the TFs and the magnetosheath jets
and Pc3–4 waves in the magnetosphere.

• Statistical study that would reveal the relative importance of travelling versus
the “regular” foreshocks for the production of magnetosheath jets and Pc3–4
waves.

• Determine the impact of each type of TUMS on the nightside magnetosphere.
For example, can they trigger substorms?

• Test whether energetic particles accelerated in the foreshock and TUMS can
enter into the magnetosphere (across the magnetopause or through the cusp)
and become geoeffective.

• Quantify the energy input from TUMS into the magnetosphere in comparison
with typical solar wind drivers.

• Determine the role of TUMS during storm time (e.g., enhance magnetospheric
ULF waves and thus modulate radiation belt particles).

7



• Determine how HFAs excite the Pc3 waves and whether they can also be caused
by FBs.

• Determine the impact of TUMS on the near-planetary environment at other
planets. One such opportunity will emerge with the dual orbiter BepiColombo
mission at Mercury.

Such tasks require multi-point spacecraft observations as well as 3D physically
scaled global numeric models that go beyond the fluid description of plasma. Cur-
rently, numerous in-situ and ground based observations are available as well as the
required kinetic simulation assets that will make addressing these tasks possible.
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Figure 1: (a) Examples of observed (a) HFA, (b) FB, (c) FCB and (d) TF. Sketches of (e) HFA, (f) FB and (g) TF and FCB and the
corresponding downstream effects. The panels a) to d) exhibit (form top to bottom) magnetic field magnitude, plasma density,
parallel (blue) and perpendicular (red) ion temperatures, SW speed, SW velocity components, SW Pdyn and ions spectra. In the
case of the HFA and FB, the red shaded intervals mark rims of enhanced B and plasma density, while yellow shaded intervals
mark hot cores. In the case of the FCB, the intervals shaded in red and yellow mark the B and density dip and peak, respectively.
In the case of the traveling foreshock, the yellow color marks its core, while the red color marks the surrounding FCBs.
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